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Onset of convection in a binary mixture near the plait point

Kausik S. Das and J. K. Bhattacharjee*
Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700032, India

~Received 13 October 1999!

Recent experiments on the onset of convection near the liquid-vapor critical point of3He have shown the
crossover from the Rayleigh criterion to the Schwarzschild criterion for the threshold of convection as the
critical point is approached. In contrast we show that for3He-4He mixtures near the liquid-vapor critical point
~plait point!, the Rayleigh criterion would hold right through. Interestingly enough, this is a consequence of the
proper boundary conditions. This prediction should be easy to test experimentally.

PACS number~s!: 44.25.1f, 47.27.Te, 64.70.Fx
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The onset of Rayleigh Benard convection in a single co
ponent fluid is very well understood@1#. The Rayleigh crite-
rion for the onset can be understood qualitatively, the criti
Rayleigh number calculated quantitatively, and the res
successfully compared with experiments. If the convect
fluid is very close to the critical point and hence extrem
compressible, the Rayleigh criterion has to be changed to
Schwarzchild criterion@2#. The quantitative calculation, firs
done by Steinberg and Gitterman@3,4# has lately been given
a much simpler reformulation by Carles and Ugurtas@5#. The
results show a smooth crossover from the Rayleigh crite
to the Schwarzschild criterion as the fluid is brought clo
and closer to the critical point. Very recently a clean expe
mental verification of this result has been given by Kog
Murphy, and Meyer@6#, who worked with3He very near its
critical point. The single most important feature is that und
the Rayleigh criterion, the critical temperature differen
DTc for the onset of convection would go to zero as t
critical point is approached, whereas the crossover from R
leigh to Schwarzschild implies that there is a finiteDTc even
at the critical point. This finite value ofDTc at extreme criti-
cality, has indeed been observed by Kogan, Murphy,
Meyer. Denoting the distance from critical temperature
e@e5(T2Tc)/Tc#, Kogan, Murphy, and Meyer observe th
DTc decreases withe for e.1022, but then levels off at a
value which is completely consistent with the Schwarzsch
criterion.

A strong qualitative twist to the Rayleigh convection in
single component fluid can be obtained if we consider a
nary fluid. The important additional features are the possi
ity of having a density gradient due to the concentrat
gradient and the fact that a mass current can be produce
a temperature gradient~Soret effect! and vice versa~Dufour
effect!. It is customary to write the mass currentjW as

jW52DS ¹W c1
kT

Tm
¹W TD , ~1!

where D is the mass diffusion,kT is the thermodiffusion
which describes the efficiency of a temperature gradien
producing a mass current, andTm is a mean temperature. Th
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quantities which classify the nature of the convective ins
bility are the separation ratioc, and the Lewis numberS
defined as

c52
b

aP,c

kT

T
, S5

D

DT
, ~2!

b52
1

r S ]r

]cD
P,T

and aP,c52
1

r S ]r

]TD
P,c

, ~3!

with c as the concentration of one of the fluids in the m
ture, andDT5l/CP,c with l the thermal conductivity at
zero mass current, andCP,c the specific heat at constant pre
sure and concentration. If a mixture with positivekT is
heated from below, an upward concentration gradient wo
be established and for positiveb this would mean a decreas
ing density as one went upwards and a stable situation wo
ensure. Thus, in the mixture with negativec, the convective
instability does not occur when heated from below. Inste
to see the usual Rayleigh instability for negativec, the fluid
mixture needs to be heated from above. When heated f
below, the mixture undergoes a Hopf bifurcation and abov
critical Rayleigh numberR0, oscillatory convection sets in
@7,8#. To see the usual Rayleigh convection, when hea
from below, one needs a positive value ofc. For large posi-
tive c/L, the onset occurs as long wavelength rolls~zero
wave number!. The instability which occurs when heate
from above also occurs as long wavelength rolls. The os
latory instability which occurs forc.0, when heated from
below, occurs as finite wavelength rolls. Various features
this convection have been experimentally observed by L
Lucas, and Tyler@9#, Bloodworthet al. @10#, Kolodneret al.
@11#, and Moses and Steinberg@12#.

In this paper, we ask the question, what would happe
the mixture were extremely compressible? This happens
the plait point which is the critical point for the liquid-vapo
transition of the mixture. We consider mixtures with positi
c for which stationary convection occurs when heated fr
below. The behavior of the static responses of such mixtu
was investigated by Griffiths and Wheeler@13# and the dy-
namic responses by Mistura@14# with crossover effects being
studied by Luettmer-Strathmann and Sengers@15# and Folk
and Moser@16#. The consequence of the above investigatio
is that the separation parameter diverges asz12a/n as the
5191 ©2000 The American Physical Society



.
e
u
se

re
he
dy

ye
ve
th

re
la

tu
o
re
bl

nt

-

o

nd
e.

be
sis

les
o

of

an
ht-
ns

s:

ll

5192 PRE 61KAUSIK S. DAS AND J. K. BHATTACHARJEE
critical point is approached wherez is the correlation length
Our prediction is that very close to the critical point, th
usual Rayleigh Benard stationary convection will occ
when the mixture is heated from below and that this on
will be in the form of long wavelength rolls with the
Schwarzschild criterion never coming into play. These
sults are qualitatively different from the behavior near t
ordinary critical point discussed above. The static and
namic critical properties of the mixture3He-4He have been
studied near the plait point by Cohen, Dingus, and Me
@17,18#. Consequently we believe that this mixture will ser
as the ideal candidate for the experimental verification of
above contentions.

To establish the above result, we need to set up the
evant hydrodynamic equations for the mixture near the p
point. The field variables are velocityvW (rW,t), the local tem-
peratureT(rW,t), the densityr(rW,t), andc(rW,t), the concen-
tration of one of the species@for the 3He-4He mixture, we
will considerc(rW,t) as the concentration of4He]. The den-
sity satisfies the continuity equation

]r

]t
1¹W •~rvW !50. ~4!

The velocity satisfies the Navier-Stokes equation

]vW

]t
1~vW •¹W !vW 52

¹W P

r
1n¹2vW 1gW . ~5!

The concentration satisfies the conservation law

]c

]t
1~vW •¹W !c52¹W • jW5D¹2S c1

kT

Tm
TD . ~6!

The heat conduction equation in terms of the tempera
variable is most easily obtained by starting with the form
entropy flow in Landau and Lifshitz and using temperatu
pressure, and concentration as the independent varia
Standard manipulations lead to

CP,cF]T

]t
1~vW •¹W !TG2TS ]v

]TD
P,c

F]P

]t
1~vW •¹W !PG

2kTS ]m

]c D
P,T

F]c

]t
1~vW •¹W !cG5k¹2T ~7!

(k is the conductivity at vanishing concentration gradie!
and on using Eq.~6!,

CP,cF]T

]t
1~vW •¹W !TG2TS ]v

]TD
P,c

F]P

]t
1~vW •¹W !PG

5l¹2T1
DkT

2

Tm
S ]m

]c D
P,T

¹2c, ~8!

which together with Eqs.~4!–~6! constitute the set of rel
evant hydrodynamic equations.

The conduction state in a large aspect ratio fluid layer
heightL in the z direction is characterized by
r
t

-

-

r

e
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vW 50W ,
]P

]z
52rg, T5T12

DT

L
z,

jW50W , Dc52
kT

Tm
DT. ~9!

In the above,T1 is the temperature of the bottom plate a
DT5T12T2 whereT2 is the temperature of the upper plat
It is the stability of the above solution of Eqs.~4!–~6! and~8!
against the formation of convection rolls that needs to
studied. To this end, we carry out a linear stability analy
in the perturbationsdvW ~componentsu, v, andw), dP, dr,
dT,dc. It is convenient to use the constitutive relation

dr

r
5

1

r S ]r

]PD
T,c

dP2aP,cdT2bdc ~10!

to eliminate the density fluctuation.
At this stage, a great simplification was noticed by Car

and Ugurtas. Linearizing Eq.~4! in the perturbations leads t

]

]t
dr1r0~¹W •dvW !1w

]r0

]z
50. ~11!

For a stationary instability, this implies¹W •dvW 5
2w(]/]z) ln r0. Now the variation ofr0 across the cell
heightL is practically negligible for all reasonable values
L and this implies that the perturbative velocitydvW is ap-
proximately divergence free. Using this constraint, we c
write down the linearized set of equations in a fairly straig
forward manner. Keeping in mind the boundary conditio
that need to be applied, it is convenient to use instead ofdc,
fluctuationds defined asds5dc1(kT /Tm)dT. The gradi-
ent of ds gives the current. All variables are dimensionles
we scale time byl/L,dT by DT,ds by Dc and all distances
by L. This leads to

¹4w52~11c!R¹1
2u2cR¹1

2h,

¹2h52
w

S
,

~12m2S!¹2u52w~12A!1m2S¹2h, ~12!

where u and h are the scaled forms ofdT and ds, m2

5(kT
2/TCP,c)(]m/]c)P,T , A5aP,cLTg/CP,cDT and R is

the Rayleigh number defined as

R5
aP,cDTL3g

n
l

CP,c

. ~13!

The derivative¹1
2 stands for (]2/]x2)1(]2/]y2). For forma-

tion of convection rolls, the solution will be periodic in thex

andy directions with wave numberaW having the components
a1 and a2. Convecting solutions for the various fields wi
have the form @ f i(z)ei (a1x1a2y)#. Writing D5d/dz, the
above equations become
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~D22a2!2f 15~11c!Ra2f 21cRa2f 3 ,

~D22a2! f 352
f 1

S
,

~12m2S!~D22a2! f 252 f 1~12A!1m2S~D22a2! f 3 .

~14!

The boundary conditions that need to be imposed atz50 and
z51 are f 15D f 150, f 250 ~bounding plates of high ther
mal conductivity! and D f 350 ~bounding surfaces impen
etrable!. Using trial solutions in the spirit of Gutkowicz
Krusin, we find

R5

~p21a2!3

a2

12m2S

11m22A

F S 11c1
c

S

12m2S

11m22A
D G12

c

S

12m2S

11m22A
G2G ,

~15!

where

G1512
16ap2 cosh2 a/2

~p21a2!2~a1sinha!
, ~16!

and

G25
p2

a2 F11
~p223a2!

~p21a2!

cotha/2

a
2

11cosha

a1sinha
cotha/2G .

~17!

From Eq.~15!, the critical temperature differenceDT for the
onset of convection with wave numbera is

DT5
nl

CP,c

1

aP,cL
3g

~p21a2!3

a2

3
~12m2S!

F11m21cS 11
1

SD GG12
c

S
~12m2S!G2

1
aP,cLTg

CP,c

~11c!G1

F11m21cS 11
1

SD GG12
c

S
~12m2S!G2

,

~18!

the principal result of this paper. To find the actualDTc we
need to minimize the above expression as a function ofa.

Since, the above expression is to be considered nea
plait point, we need to examine the critical behavior of t
various thermodynamic and transport properties involv
From Griffiths and Wheeler, we know thatCP,c andaP,c are
proportional toza/n and that (]c/]m)P,T;zg/n. Combining
these results with the transport coefficients found by Mistu
m2;z2a/n, S;z211a/n, c;z12a/n, n;zXh /n and l;z0.
Sufficiently close to criticality whenz is large, Eq.~18! sim-
plifies to
he

.

,

DT5
S

c

nl

CP,c

1

aP,cL
3g

~p21a2!3

a2

1

G12G2

1
aP,cLTg

CP,c

SG1

G12G2
. ~19!

It is the second term on the right hand side which is pres
only when the system is near the plait point and the co
pressibility is taken into account. For the single compon
fluid it leads to the Schwarzschild criterion. If we examin
the functionsG1 and G2, then we find thatG1 varies be-
tween 128/p2 and 1 asa goes from zero to infinity, while
G2 is 2(2422p2/3a2) for a,,1 and increases top2/a2

for a..1. Thus,G1 is always1ve andG2 is 2ve for all
reasonable values ofa and the combinationG12G2 is al-
ways1ve. The first term inDT is consequently positive fo
all negativec and the second term is always positive. No
S/c,,S close toTc and hence the second term might a
pear to dominate, which would be the Schwarzschild effe
Indeed, for idealized stress-free boundaries this would be
case. But for the realistic boundaries considered here,
second term isO(a2) for a,,1 and finite fora..1. The
first term as a function ofa2 is finite asa2→0 and diverges
asa4 for a..1.

Consequently, the critical Rayleigh number is obtain
for a→0 and is given by

R5
S

c

3p6

2422p2
.677

S

c
. ~20!

Having noted the irrelevance of the compressibility from t
above variational calculation, we can mention that the ex
result corresponding to Eq.~20! is R5720S/c.

In closing, we want to reemphasize the importance
boundary conditions in obtaining the above result. To
this, let us return to Eq.~18! and without making any as
sumption regarding the critical behavior of the paramet
involved study the right hand side as a function ofa. For a
→0, the first term on the right hand side without any a
proximation is S/c@3p6/(2422p2)1Ba2#, where B is a
positive constant. The second term is exactly (aLTg/
Cpc ) @(11c)S/c (12m2S)# @12(8/p2 )# (3a2/2422p2).
The O(a2) correction to the leading term of the right han
side of Eq.~18! is consequently always positive forcinga
50 to be a minimum. The simplification that we have e
hibited in Eq.~19! by taking the asymptotic critical behavio
into account is only to exhibit the potentially importa
Schwarzschild term. It is well known that in a real expe
ment, there would be crossover effects which would me
the passage from Eq.~18! to Eq. ~19! is going to be compli-
cated as a function of reduced temperature and conce
tion. However, the boundary condition on the mass curr
makes this irrelevant for our final answer. Due to the bou
ary condition, the Schwarzschild term is never importa
We can recast the result in another fashion: in a single c
ponent fluid like3He-4He near its liquid-vapor critical point
the compressibility effect changes the hydrodynamic eff
and a crossover from a Rayleigh criterion to the Schwar
child criterion occurs. In a mixture like3He-4He near its
liquid-vapor critical point, the zero mass current bounda
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condition of hydrodynamics is so strong that it complete
masks the critical effect and keeps the hydrodynamics u
tered at the Rayleigh criterion. It should be noted that
boundary condition which makes this work is the zero m
current condition at the bounding surfaces — a fact which
will be true for all experimental cells. What can differ, is th
thermal boundary on the plates and this will change the p
actor ofS/c in Eq. ~20!, e.g., for thermally insulating bound
aries the prefactor is 120 instead of 677. We end with
claim that for a convection experiment done on a liquid m
y

:

ds
l-
e
s

f-

e
-

ture ~heated from above for negativec and heated from be
low for positivec), the Schwarzschild effect will not be see
and instead the usual Rayleigh criterion of Eq.~20! will hold.
The only requirement for this is that the mixture shows
finite kT which for dynamical purposes identify it as a bina
mixture. SincekT has a strong divergence, this is not a pro
lem for any of the critical fluids.
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