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Onset of convection in a binary mixture near the plait point
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Recent experiments on the onset of convection near the liquid-vapor critical potiteohave shown the
crossover from the Rayleigh criterion to the Schwarzschild criterion for the threshold of convection as the
critical point is approached. In contrast we show thatfde-*He mixtures near the liquid-vapor critical point
(plait poiny, the Rayleigh criterion would hold right through. Interestingly enough, this is a consequence of the
proper boundary conditions. This prediction should be easy to test experimentally.

PACS numbes): 44.25:+f, 47.27.Te, 64.70.Fx

The onset of Rayleigh Benard convection in a single com-quantities which classify the nature of the convective insta-
ponent fluid is very well understodd]. The Rayleigh crite- bility are the separation ratigy, and the Lewis numbe8
rion for the onset can be understood qualitatively, the criticallefined as
Rayleigh number calculated quantitatively, and the result
successfully compared with experiments. If the convecting Bkt D
fluid is very close to the critical point and hence extremely == ap T o D_T @
compressible, the Rayleigh criterion has to be changed to the ©
Schwarzchild criterio2]. The quantitative calculation, first 1(4
done by Steinberg and Gitterm@s,4] has lately been given = _(_) and ap .= — _(_p> , (3)

a much simpler reformulation by Carles and Ugufls The p PT ' p\aT) g .

results show a smooth crossover from the Rayleigh criterion

to the Schwarzschild criterion as the fluid is brought closemwith ¢ as the concentration of one of the fluids in the mix-
and closer to the critical point. Very recently a clean experi-ture, andDt=\/Cp . with N the thermal conductivity at
mental verification of this result has been given by Koganzero mass current, ar@@} . the specific heat at constant pres-
Murphy, and Meyef6], who worked with®He very near its sure and concentration. If a mixture with positike is
critical point. The single most important feature is that undetheated from below, an upward concentration gradient would
the Rayleigh criterion, the critical temperature differencebe established and for positiy&this would mean a decreas-
AT, for the onset of convection would go to zero as theing density as one went upwards and a stable situation would
critical point is approached, whereas the crossover from Rayensure. Thus, in the mixture with negatiye the convective
leigh to Schwarzschild implies that there is a fink&. even  instability does not occur when heated from below. Instead,
at the critical point. This finite value &S T, at extreme criti-  to see the usual Rayleigh instability for negativethe fluid
cality, has indeed been observed by Kogan, Murphy, andgnixture needs to be heated from above. When heated from
Meyer. Denoting the distance from critical temperature bybelow, the mixture undergoes a Hopf bifurcation and above a
ele=(T—T,)/T.], Kogan, Murphy, and Meyer observe that critical Rayleigh numbeR,, oscillatory convection sets in
AT, decreases witle for e>102, but then levels off at a [7,8]. To see the usual Rayleigh convection, when heated
value which is completely consistent with the Schwarzschildfrom below, one needs a positive valueafFor large posi-
criterion. tive /L, the onset occurs as long wavelength rdltero

A strong qualitative twist to the Rayleigh convection in a wave number The instability which occurs when heated
single component fluid can be obtained if we consider a bifrom above also occurs as long wavelength rolls. The oscil-
nary fluid. The important additional features are the possibilHatory instability which occurs fogy>0, when heated from
ity of having a density gradient due to the concentrationbelow, occurs as finite wavelength rolls. Various features of
gradient and the fact that a mass current can be produced hlyis convection have been experimentally observed by Lee,
a temperature gradief®oret effect and vice vers@Dufour  Lucas, and Tyle[9], Bloodworthet al. [10], Kolodneret al.
effecd. It is customary to write the mass currgnais [11], and Moses and Steinbef2].

In this paper, we ask the question, what would happen if
the mixture were extremely compressible? This happens near
, (1)  the plait point which is the critical point for the liquid-vapor
transition of the mixture. We consider mixtures with positive
i for which stationary convection occurs when heated from
where D is the mass diffusionk; is the thermodiffusion below. The behavior of the static responses of such mixtures
which describes the efficiency of a temperature gradient inwas investigated by Griffiths and Wheeler3] and the dy-
producing a mass current, aiig, is a mean temperature. The namic responses by Mistufa4] with crossover effects being
studied by Luettmer-Strathmann and Sendéfy and Folk
and Mosef16]. The consequence of the above investigations
*Electronic address: tpjkb@mahendra.iacs.res.in is that the separation parameter diverges(&s*” as the
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critical point is approached whetlgis the correlation length. oP

Our prediction is that very close to the critical point, the v=0, 97 —pg, T=Ty— T2
usual Rayleigh Benard stationary convection will occur
when the mixture is heated from below and that this onset K
; ; ; s = T
will be in the form of long wavelength rolls with the j=0, Ac=-——AT. (9)
Schwarzschild criterion never coming into play. These re- Tm

sults are qualitatively different from the behavior near the )
ordinary critical point discussed above. The static and dy!n the aboveT, is the temperature of the bottom plate and

namic critical properties of the mixturdHe-*He have been AT=T1—T, whereT; is the temperature of the upper plate.
studied near the plait point by Cohen, Dingus, and Meyer't is the stability of the above solution of Eq4)—(6) and(8)

[17,18. Consequently we believe that this mixture will serve @9ainst the formation of convection rolls that needs to be
as the ideal candidate for the experimental verification of thétudied. To this end, we carry out a linear stability analysis
above contentions. in the perturbation$v (componentsy, v, andw), 5P, &p,

To establish the above result, we need to set up the reldT,dc. It is convenient to use the constitutive relation
evant hydrodynamic equations for the mixture near the plait
point. The field variables are velocit(r,t), the local tem- s _1
peratureT(r,t), the densityp(r,t), andc(r,t), the concen- p P
tration of one of the specidgor the *He-*He mixture, we
will considerc(F,t) as the concentration dfHe]. The den-
sity satisfies the continuity equation

ﬂp)
—=| O6P—ap ST—pBéC (10
(ap T.c
to eliminate the density fluctuation.

At this stage, a great simplification was noticed by Carles
and Ugurtas. Linearizing E@4) in the perturbations leads to

iy B L 11
9P+ po(V- UHWE_ : (11

Jp - -
E—FV-(pv)—O. (4)

The velocity satisfies the Navier-Stokes equation .
For a stationary instability, this impliesV:dv=

-

g . . . VP o —w(d/dz)In po. Now the variation ofpy across the cell
EHU Vo=~ 7+ wWoa+g. (5)  heightL is practically negligible for all reasonable values of
L and this implies that the perturbative veloci«ﬁgZ is ap-
The concentration satisfies the conservation law proximately divergence free. Using this constraint, we can
write down the linearized set of equations in a fairly straight-
Jic - . .. ) kg forward manner. Keeping in mind the boundary conditions
o F-V)e=—V.j=DV* c+ T—mT) : (6)  that need to be applied, it is convenient to use insteastof

fluctuation o defined asSo= éc+ (kt/T,,) 6T. The gradi-

The heat conduction equation in terms of the temperatur@m of do gives the current. All variables are dime_nsionless:
variable is most easily obtained by starting with the form of W€ Scale time by\/L, 5T by AT, 5o by Ac and all distances
entropy flow in Landau and Lifshitz and using temperature,by L. This leads to

pressure, and concentration as the independent variables.

4p, 2 2
Standard manipulations lead to Viw=—(1+4)RVi6—yRViny,

ORI KAIIPRIR 20 B CH I AR 7 V2=
Pl et T VTG ey s
9 Jc . . _ 2e\Ww2h_ _ _ 20v2
—kT(f) % G Dre|=aviT @ (1-p?S)V20=—w(1-A)+u?SV?y, (12
PT where ¢ and 7 are the scaled forms ofT and 6o, u?
(« is the conductivity at vanishing concentration gradient = (K#/TCp c)(du/dC)p r, A=apLTgICp AT and R is
and on using Eq(6), the Rayleigh number defined as
T .. w\ [P . . ap ATL%g
- . —Tl = _ . R=——F+-—. 13
Cp. g +(-V)T T<(?T)pc g +(v V)P} ) X (13
’ C
) Dk% u 5 P.e
SAVITH T loc), TV < ®  The derivativeV 2 stands for §2/9x?) + (3%/ 9y?). For forma-

tion of convection rolls, the solution will be periodic in tke

which together with Eqgs(4)—(6) constitute the set of rel- andy directions with wave numbex having the components
evant hydrodynamic equations. a, anda,. Convecting solutions for the various fields will

The conduction state in a large aspect ratio fluid layer ohave the form[f;(z)e'(®*"32¥)]. Writing D=d/dz, the
heightL in the z direction is characterized by above equations become
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(D2—a?)2f;=(1+ ¢y)Ra’f,+ yRa’f,

f
(D?-a%)fy=~ ¢,
(1— u?S)(D?—a?)f,=—f1(1—A)+ u?S(D?—a?)f,.
(14

The boundary conditions that need to be imposed=dl and

z=1 aref,=Df,;=0, f,=0 (bounding plates of high ther-
mal conductivity and Df;=0 (bounding surfaces impen-
etrablg. Using trial solutions in the spirit of Gutkowicz-

Krusin, we find

(m*+a%)® 1-u’S
a® 1+ u?—A

1—u?S 1—u®S
1+ y+ g —M _ f —M 5
S1+u’-A S1+u’-A
(15
where
- 16a7? cosit a/2 18
! (w2+a?)%(a+sinha)’
and
2 (m?—3a?) cotha/2 1+ cosha
G2=—2 1 - - cotha/2|.
a (m2+a?) a a+sinha
17

From Eq.(15), the critical temperature differenceT for the
onset of convection with wave numbaiis

VA 1 (m?+a?)3
AT=
Cecapcl®y a2
1—uS
o (1 ueS) -
1+ p2+ g 1+ 2| |G1— =(1-u?9)G,
S S
apLTg (1+¢)G,
Crec ’

4
Gi— g(l_MZS)Gz

1+ p?+ (1+1
porg| It g
(18)

the principal result of this paper. To find the actidl . we
need to minimize the above expression as a functioa. of
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S »A 1 (m*+a®»® 1
AT=—
Y Cpcapli®y a2 G1=G
ap LT S
4 dPo g G (19

Cpe G1-Gy’
It is the second term on the right hand side which is present
only when the system is near the plait point and the com-
pressibility is taken into account. For the single component
fluid it leads to the Schwarzschild criterion. If we examine
the functionsG; and G,, then we find thaiG, varies be-
tween 1-8/7? and 1 asa goes from zero to infinity, while
G, is —(24—2m?/3a?) for a<<1 and increases te?/a’
fora>>1. Thus,G; is always+ve andG, is —ve for all
reasonable values @& and the combinatios;— G, is al-
ways +ve. The first term inAT is consequently positive for
all negativeys and the second term is always positive. Now
S/<<S close toT. and hence the second term might ap-
pear to dominate, which would be the Schwarzschild effect.
Indeed, for idealized stress-free boundaries this would be the
case. But for the realistic boundaries considered here, the
second term i©(a?) for a<<1 and finite fora>>1. The
first term as a function o&? is finite asa?—0 and diverges
asa* fora>>1.

Consequently, the critical Rayleigh number is obtained
for a—0 and is given by

R= > 37 677 (20)
Y 24-272

Having noted the irrelevance of the compressibility from the
above variational calculation, we can mention that the exact
result corresponding to E@20) is R=7205/ .

In closing, we want to reemphasize the importance of
boundary conditions in obtaining the above result. To do
this, let us return to Eq(18) and without making any as-
sumption regarding the critical behavior of the parameters
involved study the right hand side as a functionaof~or a
—0, the first term on the right hand side without any ap-
proximation is S/ [ 37% (24— 27%)+Ba?], whereB is a
positive constant. The second term is exactlyL{Tg/
Cpc) [(1+ $)SIy (1— u?S)][1—(8/72)] (3a%/24—27?).

The O(a?) correction to the leading term of the right hand
side of Eq.(18) is consequently always positive forciray

=0 to be a minimum. The simplification that we have ex-
hibited in Eq.(19) by taking the asymptotic critical behavior
into account is only to exhibit the potentially important
Schwarzschild term. It is well known that in a real experi-
ment, there would be crossover effects which would mean
the passage from E¢18) to Eq.(19) is going to be compli-
cated as a function of reduced temperature and concentra-

Since, the above expression is to be considered near th®n. However, the boundary condition on the mass current
plait point, we need to examine the critical behavior of themakes this irrelevant for our final answer. Due to the bound-
various thermodynamic and transport properties involvedary condition, the Schwarzschild term is never important.

From Griffiths and Wheeler, we know th@ . andap . are
proportional tof** and that gc/du)p 1~ ¢""". Combining

We can recast the result in another fashion: in a single com-
ponent fluid like*He-*He near its liquid-vapor critical point,

these results with the transport coefficients found by Misturathe compressibility effect changes the hydrodynamic effect

MZN é«fa/v’ S~§*l+a/v’ l/i"“ gl*a/v' V~an/y and )\~§O
Sufficiently close to criticality whed is large, Eq(18) sim-
plifies to

and a crossover from a Rayleigh criterion to the Schwarzs-
child criterion occurs. In a mixture lik€éHe-*He near its
liquid-vapor critical point, the zero mass current boundary
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condition of hydrodynamics is so strong that it completelyture (heated from above for negative and heated from be-
masks the critical effect and keeps the hydrodynamics unalew for positive ), the Schwarzschild effect will not be seen
tered at the Rayleigh criterion. It should be noted that theand instead the usual Rayleigh criterion of E2p) will hold.
boundary condition which makes this work is the zero massthe only requirement for this is that the mixture shows a
current condition at the bounding surface- a fact which  finjte k; which for dynamical purposes identify it as a binary

will be true for all experimental cells. What can differ, is the mixture. Sincek; has a strong divergence, this is not a prob-
thermal boundary on the plates and this will change the prefro .y, for any of the critical fluids.

actor of S/ in Eq. (20), e.g., for thermally insulating bound-
aries the prefactor is 120 instead of 677. We end with the One of the authorgK.S.D.) would like to thank CSIR
claim that for a convection experiment done on a liquid mix-India for partial financial assistance.
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